naampy package¶
Subpackages¶
Submodules¶
naampy.in_rolls_fn module¶
- class naampy.in_rolls_fn.InRollsFnData[source]¶
Bases:
objectInRollsFnData class.
- classmethod in_rolls_fn_gender(df: DataFrame, namecol: str, state: str | None = None, year: int | None = None, dataset: str = 'v2_1k') DataFrame[source]¶
Appends additional columns from Female ratio data to the input DataFrame based on the first name.
Removes extra space. Checks if the name is the Indian electoral rolls data. If it is, outputs data from that row.
- Parameters:
df (
DataFrame) – Pandas DataFrame containing the first name column.namecol (str) – Columnn name containing the first name.
state (str or None) – The state from which Indian electoral rolls data to be used. (default is None for all states)
year (int or None) – The year of Indian electoral rolls to be used. (default is None for all years)
- Returns:
- Pandas DataFrame with additional columns:-
‘n_female’, ‘n_male’, ‘n_third_gender’, ‘prop_female’, ‘prop_male’, ‘prop_third_gender’ by first name
- Return type:
DataFrame
- static list_states(dataset: str = 'v2_1k') ndarray[source]¶
- Parameters:
dataset (str) – version of the dataset
- Returns:
list of states
- naampy.in_rolls_fn.in_rolls_fn_gender(df: DataFrame, namecol: str, state: str | None = None, year: int | None = None, dataset: str = 'v2_1k') DataFrame¶
Appends additional columns from Female ratio data to the input DataFrame based on the first name.
Removes extra space. Checks if the name is the Indian electoral rolls data. If it is, outputs data from that row.
- Parameters:
df (
DataFrame) – Pandas DataFrame containing the first name column.namecol (str) – Columnn name containing the first name.
state (str or None) – The state from which Indian electoral rolls data to be used. (default is None for all states)
year (int or None) – The year of Indian electoral rolls to be used. (default is None for all years)
- Returns:
- Pandas DataFrame with additional columns:-
‘n_female’, ‘n_male’, ‘n_third_gender’, ‘prop_female’, ‘prop_male’, ‘prop_third_gender’ by first name
- Return type:
DataFrame
- naampy.in_rolls_fn.main(argv=['-M', 'html', 'source', 'build'])[source]¶
Main method for shell support
- naampy.in_rolls_fn.predict_fn_gender(first_names: list[str]) DataFrame¶
Predict gender based on name :param first_names: list of first name :type first_names: list of str
- Returns:
Pandas DataFrame with predicted labels and probability
- Return type:
DataFrame
naampy.utils module¶
- naampy.utils.find_ngrams(vocab: list, text: str, n: int) list[source]¶
Find and return list of the index of n-grams in the vocabulary list.
Generate the n-grams of the specific text, find them in the vocabulary list and return the list of index have been found.
- Parameters:
vocab (
list) – Vocabulary list.text (str) – Input text
n (int) – N-grams
- Returns:
List of the index of n-grams in the vocabulary list.
- Return type:
list
Module contents¶
- naampy.in_rolls_fn_gender(df: DataFrame, namecol: str, state: str | None = None, year: int | None = None, dataset: str = 'v2_1k') DataFrame¶
Appends additional columns from Female ratio data to the input DataFrame based on the first name.
Removes extra space. Checks if the name is the Indian electoral rolls data. If it is, outputs data from that row.
- Parameters:
df (
DataFrame) – Pandas DataFrame containing the first name column.namecol (str) – Columnn name containing the first name.
state (str or None) – The state from which Indian electoral rolls data to be used. (default is None for all states)
year (int or None) – The year of Indian electoral rolls to be used. (default is None for all years)
- Returns:
- Pandas DataFrame with additional columns:-
‘n_female’, ‘n_male’, ‘n_third_gender’, ‘prop_female’, ‘prop_male’, ‘prop_third_gender’ by first name
- Return type:
DataFrame
- naampy.predict_fn_gender(first_names: list[str]) DataFrame¶
Predict gender based on name :param first_names: list of first name :type first_names: list of str
- Returns:
Pandas DataFrame with predicted labels and probability
- Return type:
DataFrame