# naampy Documentation Welcome to **naampy** - a Python package for inferring sociodemographic characteristics from Indian names. ## What is naampy? naampy helps you infer gender and other demographic information from Indian first names using data from the Indian Electoral Rolls. This can be useful for: - Analyzing gender representation in datasets - Estimating demographic biases in various contexts - Research on Indian names and demographics - Data enrichment and analysis ## Features - πŸš€ **Easy to use**: Simple API with just two main functions - πŸ“Š **Data-driven**: Based on millions of names from Indian Electoral Rolls - 🎯 **Accurate**: Provides confidence scores with predictions - πŸ—ΊοΈ **State-specific**: Get region-specific predictions for better accuracy - πŸ€– **ML-powered**: Includes a neural network model for name-based predictions ## Quick Links ### πŸš€ [Getting Started](getting_started.md) Installation instructions and your first prediction ### πŸ“– [User Guide](user_guide.md) Detailed usage examples and best practices ### πŸ“š [API Reference](api_reference.md) Complete API documentation ### ℹ️ [About](about.md) Background and methodology ## Quick Example ```python import pandas as pd from naampy import in_rolls_fn_gender # Create a DataFrame with names names_df = pd.DataFrame({'name': ['Priyanka', 'Rahul', 'Kavita']}) # Get gender predictions result = in_rolls_fn_gender(names_df, 'name') print(result[['name', 'prop_female', 'prop_male']]) ``` ## Try it Online Check out our [Streamlit App](https://naampy.streamlit.app/) for an interactive demo! ## Contents ```{toctree} :maxdepth: 2 :hidden: getting_started user_guide api_reference about ```