naamkaran: Generative Model for Names ===================================== .. image:: https://github.com/appeler/naamkaran/actions/workflows/python-package.yml/badge.svg :target: https://github.com/appeler/naamkaran/actions?query=workflow%3Apython-package :alt: Tests .. image:: https://img.shields.io/pypi/v/naamkaran.svg :target: https://pypi.python.org/pypi/naamkaran :alt: PyPI Version .. image:: https://static.pepy.tech/badge/naamkaran :target: https://pepy.tech/project/naamkaran :alt: Downloads Naamkaran is a generative model for names built with PyTorch. It uses a character-level RNN (LSTM) trained on Florida Voter Registration Data to generate names based on starting letter, ending letter, gender, and other parameters. Features -------- * **Character-level LSTM**: Deep learning model trained on real name data * **Flexible generation**: Generate names by starting letter, ending letter, gender, and length * **Multiple interfaces**: Python API, command-line tool, Gradio web app, and Flask API * **High-quality output**: Names that look and sound realistic * **Fast inference**: Optimized for quick name generation Quick Start ----------- Install naamkaran: .. code-block:: bash pip install naamkaran Generate names programmatically: .. code-block:: python from naamkaran.generate import generate_names # Generate 5 female names starting with 'A' and ending with 'a' names = generate_names( starting_letter='A', ending_letter='a', gender='F', num_names=5, max_len=8, temperature=0.7 ) print(names) Or use the command line: .. code-block:: bash generate_names -s A -e a -g F -n 5 -m 8 -t 0.7 Table of Contents ----------------- .. toctree:: :maxdepth: 2 :caption: User Guide: installation quickstart examples web_interfaces .. toctree:: :maxdepth: 2 :caption: API Reference: api/modules api/naamkaran .. toctree:: :maxdepth: 1 :caption: Development: contributing changelog Indices and Tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`